Code Library

Reusable code snippets and complete implementations. Copy, paste, and adapt for your projects.

Machine LearningPython
Linear Regression Implementation
Complete implementation of linear regression from scratch using NumPy
GitHub
import numpy as np

class LinearRegression:
    def __init__(self, learning_rate=0.01, iterations=1000):
        self.lr = learning_rate
        self.iterations = iterations
        self.weights = None
        self.bias = None
    
    def fit(self, X, y):
        n_samples, n_features = X.shape
        self.weights = np.zeros(n_features)
        self.bias = 0
        
        for _ in range(self.iterations):
            y_pred = np.dot(X, self.weights) + self.bias
            dw = (1/n_samples) * np.dot(X.T, (y_pred - y))
            db = (1/n_samples) * np.sum(y_pred - y)
            
            self.weights -= self.lr * dw
            self.bias -= self.lr * db
    
    def predict(self, X):
        return np.dot(X, self.weights) + self.bias
Data AnalysisPython
Data Preprocessing Pipeline
Comprehensive data cleaning and preprocessing functions
GitHub
import pandas as pd
from sklearn.preprocessing import StandardScaler

def preprocess_data(df):
    # Handle missing values
    df = df.fillna(df.mean())
    
    # Remove duplicates
    df = df.drop_duplicates()
    
    # Encode categorical variables
    categorical_cols = df.select_dtypes(include=['object']).columns
    df = pd.get_dummies(df, columns=categorical_cols)
    
    # Scale numerical features
    scaler = StandardScaler()
    numerical_cols = df.select_dtypes(include=['float64', 'int64']).columns
    df[numerical_cols] = scaler.fit_transform(df[numerical_cols])
    
    return df
Deep LearningPython
Neural Network Layer
Custom neural network layer implementation with backpropagation
GitHub
import numpy as np

class DenseLayer:
    def __init__(self, input_size, output_size):
        self.weights = np.random.randn(input_size, output_size) * 0.01
        self.bias = np.zeros((1, output_size))
    
    def forward(self, inputs):
        self.inputs = inputs
        self.output = np.dot(inputs, self.weights) + self.bias
        return self.output
    
    def backward(self, dvalues, learning_rate):
        dweights = np.dot(self.inputs.T, dvalues)
        dbias = np.sum(dvalues, axis=0, keepdims=True)
        dinputs = np.dot(dvalues, self.weights.T)
        
        self.weights -= learning_rate * dweights
        self.bias -= learning_rate * dbias
        
        return dinputs
SQLPython
SQL Query Builder
Python class for building SQL queries programmatically
GitHub
class QueryBuilder:
    def __init__(self, table):
        self.table = table
        self.query_parts = []
    
    def select(self, *columns):
        cols = ', '.join(columns) if columns else '*'
        self.query_parts.append(f"SELECT {cols} FROM {self.table}")
        return self
    
    def where(self, condition):
        self.query_parts.append(f"WHERE {condition}")
        return self
    
    def order_by(self, column, direction='ASC'):
        self.query_parts.append(f"ORDER BY {column} {direction}")
        return self
    
    def limit(self, count):
        self.query_parts.append(f"LIMIT {count}")
        return self
    
    def build(self):
        return ' '.join(self.query_parts)

Want the Complete Repository?

Access all our code examples, projects, and resources on GitHub.

View on GitHub